Back to Search Start Over

Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode

Authors :
Hongfei Li
Zifeng Wang
Zengxia Pei
Zhuoxin Liu
Zijie Tang
Longtao Ma
Zhaoheng Ruan
Juan Antonio Zapien
Yan Huang
Chunyi Zhi
Shengmei Chen
Source :
Energy & Environmental Science. 11:2521-2530
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

The Zn/Co3O4 battery is one of the few aqueous electrolyte batteries with a potential &gt;2 V voltage. Unfortunately, so far, all reported Zn/Co3O4 batteries are using an alkaline electrolyte, resulting in poor cycling stability and environmental problems. Here, we report a Co(III) rich-Co3O4 nanorod material with vastly improved electrochemical kinetics. Zn/Co(III) rich-Co3O4 batteries can work well in ZnSO4 with a CoSO4 additive aqueous solution as a mild electrolyte, delivering a high voltage of 2.2 V, a capacity of 205 mA h g−1 (Co3O4) and an extreme cycling stability of 92% capacity retention even after 5000 cycles. Further mechanistic study reveals a conversion reaction between in situ formed CoO and Co3O4, which has never been observed in an alkaline Zn/Co3O4 battery. Subsequently, a flexible solid-state battery is constructed and reveals high flexibility and a high energy density of 360.8 W h kg−1 at a current density of 0.5 A g−1. Our research initiates the first Zn/Co3O4 battery working in a mild electrolyte, resulting in excellent electrochemical performance. It also indicates that the electrochemical kinetics can be effectively enhanced by fine tuning the atomic structure of electrode materials, opening a new door to improve the performance of aqueous electrolyte batteries.

Details

ISSN :
17545706 and 17545692
Volume :
11
Database :
OpenAIRE
Journal :
Energy & Environmental Science
Accession number :
edsair.doi...........51d1c55e2b9823d7bfa73059a6c81c67