Back to Search Start Over

New type i binary [72, 36, 12] self-dual codes from composite matrices and R1 lifts

Authors :
Serap Sahinkaya
Adrian Korban
Deniz Ustun
Source :
Advances in Mathematics of Communications. 17:994-1011
Publication Year :
2023
Publisher :
American Institute of Mathematical Sciences (AIMS), 2023.

Abstract

In this work, we define three composite matrices derived from group rings. We employ these composite matrices to create generator matrices of the form \begin{document}$ [I_n \ | \ \Omega(v)], $\end{document} where \begin{document}$ I_n $\end{document} is the identity matrix and \begin{document}$ \Omega(v) $\end{document} is a composite matrix and search for binary self-dual codes with parameters \begin{document}$ [36,18, 6 \ \text{or} \ 8]. $\end{document} We next lift these codes over the ring \begin{document}$ R_1 = \mathbb{F}_2+u\mathbb{F}_2 $\end{document} to obtain codes whose binary images are self-dual codes with parameters \begin{document}$ [72,36,12]. $\end{document} Many of these codes turn out to have weight enumerators with parameters that were not known in the literature before. In particular, we find \begin{document}$ 30 $\end{document} new Type I binary self-dual codes with parameters \begin{document}$ [72,36,12]. $\end{document}

Details

ISSN :
19305338 and 19305346
Volume :
17
Database :
OpenAIRE
Journal :
Advances in Mathematics of Communications
Accession number :
edsair.doi...........51b2f83f8542472dabb1bf1870f0b3c0