Back to Search Start Over

Quasi-negative binomial distribution: Properties and applications

Authors :
Shubiao Li
Dennis Black
Fang Yang
Felix Famoye
Carl Lee
Source :
Computational Statistics & Data Analysis. 55:2363-2371
Publication Year :
2011
Publisher :
Elsevier BV, 2011.

Abstract

In this paper, a quasi-negative binomial distribution (QNBD) derived from the class of generalized Lagrangian probability distributions is studied. The negative binomial distribution is a special case of QNBD. Some properties of QNBD, including the upper tail behavior and limiting distributions, are investigated. It is shown that the moments do not exist in some situations and the limiting distribution of QNBD is the generalized Poisson distribution under certain conditions. A zero-inflated QNBD is also defined. Applications of QNBD and zero-inflated QNBD in various fields are presented and compared with some other existing distributions including Poisson, generalized Poisson and negative binomial distributions as well as their zero-inflated versions. In general, the QNBD or its zero-inflated version performs better than the other models based on the chi-square statistic and the Akaike Information Criterion, especially for the cases where the data are highly skewed, have heavy tails or excessive numbers of zeros.

Details

ISSN :
01679473
Volume :
55
Database :
OpenAIRE
Journal :
Computational Statistics & Data Analysis
Accession number :
edsair.doi...........5188d1028b12fe4e3f9f7e466686ad49
Full Text :
https://doi.org/10.1016/j.csda.2011.02.003