Back to Search Start Over

Abstract 1646: Discovery and characterization of BAY-6035, a novel benzodiazepine-based SMYD3 inhibitor

Authors :
Manfred Husemann
Fengling Li
Volker Badock
Viacheslav V. Trush
Detlef Stoeckigt
Cheryl H. Arrowsmith
Jörg Weiske
Shawna Organ
Stephan Siegel
Stefan Gradl
Amaury Ernesto Fernandez-Montalvan
Norbert Schmees
Magdalena M. Szewczyk
Holger Steuber
Masoud Vedadi
Steven Kennedy
Clara D. Christ
Marcus Bauser
Dalia Barsyte-Lovejoy
Andrea Haegebarth
Ingo Hartung
Carlo Stresemann
Peter Brown
Source :
Cancer Research. 78:1646-1646
Publication Year :
2018
Publisher :
American Association for Cancer Research (AACR), 2018.

Abstract

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase (PKMT) which was initially described as H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has recently been reported to methylate and regulate several non-histone cancer relevant proteins such as mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition overexpression of SMYD3 has been linked to poor prognosis in certain cancers, thus supporting a possible oncogenic role for SMYD3 and making it an attractive target for anticancer drug development. Here we report the discovery of a novel potent and selective SMYD3 inhibitor series. We performed a thermal shift assay based (TSA) high throughput screening followed by extensive biophysical validation resulting in identification of a benzodiazepine-based SMYD3 inhibitor series. The co-crystallization structures revealed that this series binds to the substrate binding site and occupies the hydrophobic pocket for lysine binding using an unprecedented hydrogen bond pattern. The competitive behavior of the inhibitor in biochemical assays was consistent with the binding mode observed in the crystal structure. Further optimization generated BAY-6035, which showed improved nanomolar potency and was selective against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibited methylation of MAP3K2 by SMYD3 in a cellular assay with similar potency. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe and will foster the exploration of the biologic role of SMYD3 in diseased and non-diseased tissues. Citation Format: Stefan Gradl, Holger Steuber, Jörg Weiske, Norbert Schmees, Stephan Siegel, Detlef Stoeckigt, Clara D. Christ, Fengling Li, Shawna Organ, Dalia Barsyte-Lovejoy, Magdalena M. Szewczyk, Steven Kennedy, Viacheslav Trush, Masoud Vedadi, Cheryl H. Arrowsmith, Peter J. Brown, Manfred Husemann, Amaury E. Fernandez-Montalvan, Volker Badock, Marcus Bauser, Andrea Haegebarth, Ingo V. Hartung, Carlo Stresemann. Discovery and characterization of BAY-6035, a novel benzodiazepine-based SMYD3 inhibitor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1646.

Details

ISSN :
15387445 and 00085472
Volume :
78
Database :
OpenAIRE
Journal :
Cancer Research
Accession number :
edsair.doi...........51143612007dd573d01cbe81426aa209