Back to Search Start Over

Transcriptional Profiles of Intestinal Tumors in Apc Min Mice are Unique from those of Embryonic Intestine and Identify Novel Gene Targets Dysregulated in Human Colorectal Tumors

Authors :
Tim Reichling
Kathleen Heppner Goss
Daniel J. Carson
Robert W. Holdcraft
Cathy Ley-Ebert
Dave Witte
Bruce J. Aronow
Joanna Groden
Source :
Cancer Research. 65:166-176
Publication Year :
2005
Publisher :
American Association for Cancer Research (AACR), 2005.

Abstract

The adenomatous polyposis coli (APC) tumor suppressor is a major regulator of the Wnt signaling pathway in normal intestinal epithelium. APC, in conjunction with AXIN and GSK-3β, forms a complex necessary for the degradation of β-catenin, thereby preventing β-catenin/T-cell factor interaction and alteration of growth-controlling genes such as c-MYC and cyclin D1. Inappropriate activation of the Wnt pathway, via Apc/APC mutation, leads to gastrointestinal tumor formation in both the mouse and human. In order to discover novel genes that may contribute to tumor progression in the gastrointestinal tract, we used cDNA microarrays to identify 114 genes with altered levels of expression in ApcMin mouse adenomas from the duodenum, jejunum, and colon. Changes in the expression of 24 of these 114 genes were not observed during mouse development at embryonic day 16.5, postnatal day 1, or postnatal day 14 (relative to normal adult intestine). These 24 genes are not previously known Wnt targets. Seven genes were validated by real-time reverse transcription-PCR analysis, whereas four genes were validated by in situ hybridization to mouse adenomas. Real-time reverse transcription-PCR analysis of human colorectal cancer cell lines and adenocarcinomas revealed that altered expression levels were also observed for six of the genes Igfbp5, Lcn2, Ly6d, N4wbp4 (PMEPA1), S100c, and Sox4.

Subjects

Subjects :
Cancer Research
Oncology

Details

ISSN :
15387445 and 00085472
Volume :
65
Database :
OpenAIRE
Journal :
Cancer Research
Accession number :
edsair.doi...........50a91ad528e80fe3ce453e9ebd4ba6d5
Full Text :
https://doi.org/10.1158/0008-5472.166.65.1