Back to Search Start Over

Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone

Authors :
Sylvain Barbot
Yuri Fialko
David T. Sandwell
Source :
Geophysical Journal International. 179:500-520
Publication Year :
2009
Publisher :
Oxford University Press (OUP), 2009.

Abstract

SUMMARY We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a ‘homogenized’ elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (∼1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4 km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults.

Details

ISSN :
1365246X and 0956540X
Volume :
179
Database :
OpenAIRE
Journal :
Geophysical Journal International
Accession number :
edsair.doi...........501d8a51ba69b4c42665d15e0f8ea93d
Full Text :
https://doi.org/10.1111/j.1365-246x.2009.04194.x