Back to Search Start Over

Transport Mechanisms in Polarized Semiconductor Photocathodes

Authors :
G. Mulhollan
R.E. Kirby
C. Y. Prescott
S. Gradinaru
K. Ioakeimidi
Axel Brachmann
E. L. Garwin
T. Maruyama
R. Prepost
J.E. Clendenin
J.C. Bierman
Source :
AIP Conference Proceedings.
Publication Year :
2007
Publisher :
AIP, 2007.

Abstract

We investigated the effect of an accelerating field on the spin polarization of photo‐generated electrons in a 100nm thick GaAs based photocathode active region. By decreasing the transport time of the electrons and the number of scattering events that cause depolarization, we expected to increase the polarization as was indicated by Monte Carlo simulations of the scattering and transport time statistics of the electrons.A tungsten (W) grid was deposited on the cathode surface to provide a uniform voltage distribution across the cathode surface. The metal grid formed a Schottky contact with the semiconductor surface. The bias voltage was primarily dropped at the metal semiconductor interface region, which is the cathode active region. For positive surface bias, the accelerating voltage not only increased the polarization, but it also enhanced the quantum efficiency of the photocathode. Preliminary results verify the bias effect on both quantum efficiency and polarization by a factor of 1.8 and 1% respecti...

Details

ISSN :
0094243X
Database :
OpenAIRE
Journal :
AIP Conference Proceedings
Accession number :
edsair.doi...........4f453feac41b75b49f94025b8486013f
Full Text :
https://doi.org/10.1063/1.2750953