Back to Search Start Over

[Untitled]

Authors :
Francois Roddier
Renate Kupke
Donald L. Mickey
G. Molodij
Source :
Solar Physics. 206:189-207
Publication Year :
2002
Publisher :
Springer Science and Business Media LLC, 2002.

Abstract

Active or adaptive optics often require the ability to characterize wavefront aberrations using natural extended sources. The task becomes especially challenging when dealing with widely extended sources such as the solar granulation. We propose a new approach based on the processing of oppositely defocused images. This method, which is a generalization of a technique known as curvature sensing, derives the wavefront curvature from the difference between two oppositely defocused images and determines the second momenta of the point spread function. The proposed method measures the wavefront aberration from the images themselves, requires little computational resources, is fast enough to be used in a real-time adaptive optics system and is particularly adapted to random patterns such as solar granulation or spot penumbras whose morphology evolves during the observation. We envision the application of the method to real-time seeing compensation in solar astronomical telescopes, and to the correction of optical system aberrations in remote sensing instrumentation. This effort is directed towards building a curvature sensor for the real-time applications.

Details

ISSN :
00380938
Volume :
206
Database :
OpenAIRE
Journal :
Solar Physics
Accession number :
edsair.doi...........4f0f17488ded64b050111bbc7a5c620c