Back to Search
Start Over
Analysis of flow field characteristics and structure optimization of the split-stream rushing muffler for diesel engine
- Source :
- Noise Control Engineering Journal. 68:101-111
- Publication Year :
- 2020
- Publisher :
- Institute of Noise Control Engineering (INCE), 2020.
-
Abstract
- In order to analyze the flow field characteristics of the split-stream rushing muffler, a theoretical model describing the velocity of the split streams is established and verified by the tracer test. For this new-principle muffler, the acoustic performance and the relationship between the velocity drop of the airflow and the pressure field are analyzed, also the structure optimization of the muffler is carried out based on the orthogonal test. Finally, a new muffler is fabricated based on the designing theory of this type of muffler for a prototype of diesel engine, and the comparative analyses are conducted compared with its original muffler. The results show that the establishment and analysis of the theoretical model for velocity during the split-streams rushing process are correct. In the frequency range of 0–1000 Hz, the average transmission loss of split-stream rushing muffler is better than that of the original muffler. While the speed of airflow is reduced by split-streams rushing, a certain pressure loss is caused at the same time, which is about 50% of total pressure loss of the muffler, and the average fluid resistance coefficient of the split-stream rushing process is 0.91. Compared to the original muffler of the sample engine, the average insertion loss of the optimized new muffler is increased by 61.2%. At inlet air velocity of 30 m/s, the pressure loss is reduced by 16.8%. The results provide a potential for practical engineering application of this new split-stream rushing muffler in future. © 2020 Institute of Noise Control Engineering
- Subjects :
- Muffler
Pressure drop
Acoustics and Ultrasonics
Mechanical Engineering
Acoustics
Transmission loss
Airflow
Public Health, Environmental and Occupational Health
Aerospace Engineering
Building and Construction
Diesel engine
01 natural sciences
Industrial and Manufacturing Engineering
law.invention
law
Drag
0103 physical sciences
Automotive Engineering
Noise control
Total pressure
010301 acoustics
Mathematics
Subjects
Details
- ISSN :
- 07362501
- Volume :
- 68
- Database :
- OpenAIRE
- Journal :
- Noise Control Engineering Journal
- Accession number :
- edsair.doi...........4edcf480d3d73831dc90a7585a776dfa