Back to Search Start Over

Smart forensic kit: Real-time estimation of postmortem interval using a highly sensitive gas sensor for microbial forensics

Authors :
Gwang Su Kim
Chong Yun Kang
Seong Keun Kim
Jeong Hun Kim
Taeehee Yoon
Joonchul Shin
Jin-Sang Kim
Seung Hyub Baek
Young Geun Song
Byeong Kwon Ju
Sung-Jin Jung
Hyo Il Jung
Hyung Ho Park
Source :
Sensors and Actuators B: Chemical. 322:128612
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Microbial forensics, exploiting bacteria, archaea, and eukaryotes, has been considered as one of the primary fields to trace the postmortem interval from the decaying cadavers. On the other hand, there remain several challenges of laboratory-based analysis for prediction of postmortem interval, including long-time measurement, complicated measuring procedure, and bacterial growth while carrying samples from the scene. Herein, we introduce the Smart Forensic Kit, which consists of a highly sensitive colorimetric gas sensor, a quality control algorithm, and a smartphone-based analysis method, to quantify the bacterial-derived ammonia gas in real-time. As a result, the estimation system of the postmortem interval has a superior selectivity to the ammonia gas with a detection limit of 38.7 ppb, response linearity to the target bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida), and short measuring time (10 min) with the maximum predicted postmortem interval from the mouse carcass (168 h). Furthermore, thanks to measuring the postmortem interval within 10 min, the negligible increase rate of bacterial concentration was observed. Consequently, the results reflected a high correlation between the ammonia gas emitted from bacteria and the postmortem interval so that we believe the Smart Forensic Kit will be applied for tracing down the decomposition of the cadavers in the near future.

Details

ISSN :
09254005
Volume :
322
Database :
OpenAIRE
Journal :
Sensors and Actuators B: Chemical
Accession number :
edsair.doi...........4ec473fda86d306f84d3e5a31ed4e173
Full Text :
https://doi.org/10.1016/j.snb.2020.128612