Back to Search
Start Over
On the complexity of monotone circuits for threshold symmetric Boolean functions
- Source :
- Discrete Mathematics and Applications. 31:345-366
- Publication Year :
- 2021
- Publisher :
- Walter de Gruyter GmbH, 2021.
-
Abstract
- The complexity of implementation of a threshold symmetric n-place Boolean function with threshold k = O(1) via circuits over the basis {∨, ∧} is shown not to exceed 2 log2 k ⋅ n + o(n). Moreover, the complexity of a threshold-2 function is proved to be 2n + Θ( $\begin{array}{} \sqrt n \end{array} $ ), and the complexity of a threshold-3 function is shown to be 3n + O(log n), the corresponding lower bounds are put forward.
Details
- ISSN :
- 15693929 and 09249265
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics and Applications
- Accession number :
- edsair.doi...........4e56046cb39bf7ef0ff1df5cde19f92d
- Full Text :
- https://doi.org/10.1515/dma-2021-0031