Back to Search Start Over

On the complexity of monotone circuits for threshold symmetric Boolean functions

Authors :
Igor S. Sergeev
Source :
Discrete Mathematics and Applications. 31:345-366
Publication Year :
2021
Publisher :
Walter de Gruyter GmbH, 2021.

Abstract

The complexity of implementation of a threshold symmetric n-place Boolean function with threshold k = O(1) via circuits over the basis {∨, ∧} is shown not to exceed 2 log2 k ⋅ n + o(n). Moreover, the complexity of a threshold-2 function is proved to be 2n + Θ( $\begin{array}{} \sqrt n \end{array} $ ), and the complexity of a threshold-3 function is shown to be 3n + O(log n), the corresponding lower bounds are put forward.

Details

ISSN :
15693929 and 09249265
Volume :
31
Database :
OpenAIRE
Journal :
Discrete Mathematics and Applications
Accession number :
edsair.doi...........4e56046cb39bf7ef0ff1df5cde19f92d
Full Text :
https://doi.org/10.1515/dma-2021-0031