Back to Search Start Over

Greenland climate change: from the past to the future

Authors :
Hubert Gallée
Uma S. Bhatt
G. Adalgeirsdottir
Amaelle Landais
Charly Massa
Jette Arneborg
Bianca B. Perren
Donald A. Walker
Marit-Solveig Seidenkrantz
Jens Hesselbjerg Christensen
Michiel R. van den Broeke
Valérie Masson-Delmotte
Vincent Jomelli
Anne de Vernal
Bo Møllesøe Vinther
Vincent Bichet
Didier Swingedouw
Fabien Gillet-Chaulet
Bo Elberling
Catherine Ritz
Emilie Gauthier
Xavier Fettweis
Source :
Wiley Interdisciplinary Reviews: Climate Change. 3:427-449
Publication Year :
2012
Publisher :
Wiley, 2012.

Abstract

Climate archives available from deep sea and marine shelf sediments, glaciers, lakes, and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that, during the last decade (2000s), atmospheric and sea surface temperatures are reaching levels last encountered millennia ago, when northern high latitude summer insolation was higher due to a different orbital configuration. Records from lake sediments in southern Greenland document major environmental and climatic conditions during the last 10,000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during the recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to strongly influence both regional climate and ice sheet dynamics. Projections from climate models are investigated to quantify the magnitude and rates of future changes in Greenland temperature, which may be faster than past abrupt events occurring under interglacial conditions. Within one century, in response to increasing greenhouse gas emissions, Greenland may reach temperatures last time encountered during the last interglacial period, approximately 125,000 years ago. We review and discuss whether analogies between the last interglacial and future changes are reasonable, because of the different seasonal impacts of orbital and greenhouse gas forcings. Over several decades to centuries, future Greenland melt may act as a negative feedback, limiting regional warming albeit with global sea level and climatic impacts. 2012 John Wiley & Sons, Ltd. How to cite this article

Details

ISSN :
17577780
Volume :
3
Database :
OpenAIRE
Journal :
Wiley Interdisciplinary Reviews: Climate Change
Accession number :
edsair.doi...........4e50bb521ddd0209cecef64adfe7a675