Back to Search
Start Over
A novel coplanar probe design for fast scanning of edema in human brain tissue via dielectric measurements
- Source :
- Sensors and Actuators B: Chemical. 220:522-527
- Publication Year :
- 2015
- Publisher :
- Elsevier BV, 2015.
-
Abstract
- As part of every standard forensic autopsy, the examination of the brain includes assessment with respect to possible edema. The quantification of edema is helpful to make a sound diagnosis in presence of multiple affections and multiple possible causes of death. The water content in certain brain regions is furthermore a promising marker to distinguish between causes of death with no visible evidence, such as suffocation, shaking impact syndrome and sudden infant death syndrome. However, in todays’ forensic medicine, no technique is available for the objective and exact quantification of edema. Therefore, the aim of this work is to develop a fast and easy-to-use measuring system for the accurate determination of the water content in human brain tissue that fits into the procedure of a routine autopsy. For our setups, the dependency between relative permittivity and water content is utilized. In former works, we presented measurements of human brain tissue using a coaxial measuring chamber and an open-ended coaxial probe. However, some drawbacks of the used methods emerged. Thus, a novel probe design using a coplanar transmission line has been developed, addressing the drawbacks of the formerly used methods. This new probe is easy to calibrate and allows fast and accurate sequential scanning for edema in human brain tissue.
- Subjects :
- Computer science
business.industry
Metals and Alloys
Fast scanning
Human brain
Sudden infant death syndrome
Condensed Matter Physics
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Coaxial probe
medicine.anatomical_structure
Optics
Edema
Materials Chemistry
medicine
Electrical and Electronic Engineering
medicine.symptom
Coaxial
Forensic autopsy
business
Instrumentation
Biomedical engineering
Subjects
Details
- ISSN :
- 09254005
- Volume :
- 220
- Database :
- OpenAIRE
- Journal :
- Sensors and Actuators B: Chemical
- Accession number :
- edsair.doi...........4e2d8ad3d00a956780dbe9011fd39a54
- Full Text :
- https://doi.org/10.1016/j.snb.2015.06.002