Back to Search Start Over

APDC-Net: Attention Pooling-Based Convolutional Network for Aerial Scene Classification

Authors :
Kun Qin
Qi Bi
Jiafen Xie
Zhili Li
Kai Xu
Han Zhang
Source :
IEEE Geoscience and Remote Sensing Letters. 17:1603-1607
Publication Year :
2020
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2020.

Abstract

Deep learning methods have boosted the performance of a series of visual tasks. However, the aerial image scene classification remains challenging. The object distribution and spatial arrangement in aerial scenes are often more complicated than in natural image scenes. Possible solutions include highlighting local semantics relevant to the scene label and preserving more discriminative features. To tackle this challenge, in this letter, we propose an attention pooling-based dense connected convolutional network (APDC-Net) for aerial scene classification. First, it uses a simplified dense connection structure as the backbone to preserve features from different levels. Then, we propose a trainable pooling to down-sample the feature maps and to enhance the local semantic representation capability. Finally, we introduce a multi-level supervision strategy, so that features from different levels are all allowed to supervise the training process directly. Exhaustive experiments on three aerial scene classification benchmarks demonstrate that our proposed APDC-Net outperforms other state-of-the-art methods with much fewer parameters and validate the effectiveness of our attention-based pooling and multi-level supervision strategy.

Details

ISSN :
15580571 and 1545598X
Volume :
17
Database :
OpenAIRE
Journal :
IEEE Geoscience and Remote Sensing Letters
Accession number :
edsair.doi...........4d3d85a5acd5def3471e85ef5622ec95
Full Text :
https://doi.org/10.1109/lgrs.2019.2949930