Back to Search
Start Over
Massive mitochondrial DNA content in diplonemid and kinetoplastid protists
- Source :
- IUBMB Life. 70:1267-1274
- Publication Year :
- 2018
- Publisher :
- Wiley, 2018.
-
Abstract
- The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans-splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper-inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4',6-diamidino-2-phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein-coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet-like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 IUBMB Life, 70(12):1267-1274, 2018.
- Subjects :
- 0301 basic medicine
Mitochondrial DNA
Nuclear gene
food.ingredient
Clinical Biochemistry
Cell Biology
Biology
Mitochondrion
Biochemistry
03 medical and health sciences
chemistry.chemical_compound
030104 developmental biology
food
chemistry
RNA editing
Organelle
Genetics
14. Life underwater
Perkinsela
Molecular Biology
Gene
DNA
Subjects
Details
- ISSN :
- 15216543 and 12671274
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- IUBMB Life
- Accession number :
- edsair.doi...........4d3b862e51267a80bdf168fdb90cac00