Back to Search
Start Over
Experiment to Measure Deep Inelastic Electron Scattering on Hydrogen and Deuterium with Seperation of Nu(W)(2) and W(1) Nucleon Structure Functions, at the Highest Fermilab Energies and Q(2) Regions
- Publication Year :
- 1975
- Publisher :
- Office of Scientific and Technical Information (OSTI), 1975.
-
Abstract
- The authors propose to measure the inclusive deep inelastic electron-nucleon scattering cross sections on hydrogen and deuterium. Cross sections will be measured in the range of momentum transfers Q{sub min}{sup 2} = 0.160 (GeV/c){sup 2} and Q{sub max}{sup 2} = 160.0 (GeV/c){sup 2}, in the range of recoil hadronic mass squared of W{sub min}{sup 2} = 2 GeV{sup 2} and W{sub max}{sup 2} = 450 GeV{sup 2}. The electromagnetic structure functions, {nu}W{sub 2}(Q{sup 2},{nu}) and W{sub 1}(Q{sup 2},{nu}), of both protons and neutrons will be measured and separated by well-known methods, in the highest possible unexplored FERMILAB kinematical regions. The high intensity Proton-West superconducting beam will be used to yield an electron beam of high purity, based on a synchrotron radiation compensated tuning technique. The electron beam will be used at 150 GeV (5 x 10{sup 8} e{sup {+-}}/pulse), at 175 GeV (3.6 x 10{sup 8} e{sup {+-}}/pulse) and at 250 GeV (1 x 10{sup 8} e{sup {+-}}/pulse). The scattered electron will be detected with good acceptance, good resolution and excellent identification. The detector will be the E-192 apparatus with small additions. A simple self-calibration procedure is available, both in experiment and apparatus, removing beam-associated and target-associated background in themore » entire (Q{sup 2}, W{sup 2}) kinematical regions. Usually, interesting physics occurs where counting rates are small. This experiment will be completely trust-worthy in such regions because their apparatus provides excellent information on the tracking and identification of scattered electrons.« less
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........4cfdb42f528283ae4af07613fb8dcd0c
- Full Text :
- https://doi.org/10.2172/988430