Back to Search
Start Over
Quasar evolution: black hole mass and accretion rate determination
- Source :
- Proceedings of the International Astronomical Union. 2:83-86
- Publication Year :
- 2006
- Publisher :
- Cambridge University Press (CUP), 2006.
-
Abstract
- Accurate measurements of emission line properties are crucial to understand the physics of the broad line region in quasars. This region consists of warm gas that is closest to the quasar central engine and has not been spatially resolved for almost all sources. We present here an analysis of optical and IR data for a large sample of quasars, covering the Hi Hβ spectral region in the redshift range 0 ≲ z ≲ 2.5. Spectra were interpreted within the framework of the the so-called “eigenvector 1” parameter space, which can be viewed as a tentative H-R diagram for quasars. We stress the lack of spectral evolution in the low ionization lines of quasars, with prominent Fe ii emission also at z ≳ 2. We also show how selection effects influence the ability to find quasars radiating at low Eddington ratio in flux-limited surveys. The quasar similarity at different redshift is probably due to the absence of super-Eddington radiators (at least within the caveats of black hole mass and Eddington ratio determination discussed in this paper) as well as to the limited Eddington ratio range within which quasars seem to radiate.
- Subjects :
- Physics
Supermassive black hole
Astrophysics::High Energy Astrophysical Phenomena
X-ray binary
Astronomy
Astronomy and Astrophysics
Quasar
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics
Redshift
Black hole
Binary black hole
Space and Planetary Science
Intermediate-mass black hole
Reverberation mapping
Astrophysics::Galaxy Astrophysics
Subjects
Details
- ISSN :
- 17439221 and 17439213
- Volume :
- 2
- Database :
- OpenAIRE
- Journal :
- Proceedings of the International Astronomical Union
- Accession number :
- edsair.doi...........4c5672fb3f38cc8c2a86dd2a9a46617a
- Full Text :
- https://doi.org/10.1017/s1743921307004735