Back to Search Start Over

Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar

Authors :
Madeline C. Evans
Christopher S. Ruf
Source :
IEEE Transactions on Geoscience and Remote Sensing. 60:1-9
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

Ocean microplastic concentrations are known to vary significantly by location, with especially high levels in the North Atlantic and North Pacific gyres. Most direct measurements come from plankton net trawling made in these regions; concentrations in other regions have been estimated by microplastic transport models that depend on large-scale ocean circulation patterns. However, global measurements of microplastic distribution and its temporal variability are lacking. A new method is presented for detecting and imaging the global distribution of ocean microplastics from space. The method uses spaceborne bistatic radar measurements of ocean surface roughness and relies on an assumed reduction in responsiveness to wind-driven roughening caused by surfactants that act as tracers for microplastics near the surface. Annual mean microplastic distributions estimated by the radars are generally consistent with model predictions. The spaceborne observations are also able to detect temporal changes that are not resolved by the models. For example, seasonal dependencies are observed at mid-latitudes in both Northern and Southern Hemispheres, with lower concentrations noted in the winter months. Time lapse images at finer spatial and temporal scales reveal episodic bursts of microplastic tracers in the outflow from major river discharges into the sea. This new method will provide better monitoring of ocean microplastics and will support future model development and validation.

Details

ISSN :
15580644 and 01962892
Volume :
60
Database :
OpenAIRE
Journal :
IEEE Transactions on Geoscience and Remote Sensing
Accession number :
edsair.doi...........4c1839103880d49c060df67ebac01035