Back to Search Start Over

Interacting dark resonances with plasmonic meta-molecules

Authors :
Michael Mrejen
Xiaobo Yin
Yuan Wang
Xiang Zhang
Pankaj K. Jha
Jeongmin Kim
Chihhui Wu
Source :
Applied Physics Letters. 105:111109
Publication Year :
2014
Publisher :
AIP Publishing, 2014.

Abstract

Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We theoretically demonstrate that these plasmonic meta-molecules exhibit sub-natural spectral response, analogous to conventional atomic four-level configuration, by manipulating the evanescent coupling between the bright and dark elements (plasmonic atoms). Using cascaded coupling, we show nearly 4-fold reduction in linewidth of the hybridized resonance compared to a resonantly excited single bright plasmonic atom with same absorbance. In addition, we engineered the geometry of the meta-molecules to realize efficient intramolecular excitation transfer with nearly 80%, on resonant excitation, of the total absorption being localized at the second dark plasmonic atom. An analytical description of the spectral response of the structure is presented with full electrodynamics simulations to corroborate our results. Such multilayered meta-molecules can bring a new dimension to higher quality factor plasmonic resonance, efficient excitation transfer, wavelength demultiplexing, and enhanced non-linearity at nanoscale.

Details

ISSN :
10773118 and 00036951
Volume :
105
Database :
OpenAIRE
Journal :
Applied Physics Letters
Accession number :
edsair.doi...........4aaa4719f1af437a0d2937a7c3abe28c
Full Text :
https://doi.org/10.1063/1.4896035