Back to Search Start Over

Inhibition of cell polarity establishment in stomatal asymmetric cell division using the chemical compound bubblin

Authors :
Makoto Shirakawa
Shigeo S. Sugano
Ikuko Hara-Nishimura
Hiroshi Sugiyama
Tomoo Shimada
Tsuyoshi Nakagawa
Yu Imai
Yusuke Kawamoto
Yumiko Sakai
Takashi Kawase
Source :
Development.
Publication Year :
2017
Publisher :
The Company of Biologists, 2017.

Abstract

Stem-cell polarization is a crucial step in asymmetric cell division, which is a universal system for generating cellular diversity in multicellular organisms. Several conventional genetics studies have attempted to elucidate the mechanisms underlying cell polarization in plants, but it remains largely unknown. In plants, stomata, which are valves for gas exchange, are generated through several rounds of asymmetric divisions. In this study, we identified and characterized a chemical compound that affects stomatal stem-cell polarity. High-throughput screening for bioactive molecules identified a pyridine-thiazole derivative, named bubblin, which induced stomatal clustering in Arabidopsis epidermis. Bubblin perturbed stomatal asymmetric division, resulting in the generation of two identical daughter cells. Both cells continued to express the stomatal-fate determinant SPEECHLESS, and then differentiated into mispatterned stomata. Bubblin-treated cells had a defect in the polarized localization of BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), which is required for asymmetric cell fate determination. Our results suggest that bubblin induces stomatal lineage cells to divide without BASL-dependent pre-mitotic establishment of polarity. Bubblin is a potentially valuable tool for investigating cell polarity establishment in stomatal asymmetric division.

Details

ISSN :
14779129 and 09501991
Database :
OpenAIRE
Journal :
Development
Accession number :
edsair.doi...........4a8b1d95a854376519134a5c1e68e0f8
Full Text :
https://doi.org/10.1242/dev.145458