Back to Search
Start Over
Diclazuril Inhibits Biofilm Formation and Hemolysis of Staphylococcus aureus
- Source :
- ACS Infectious Diseases. 7:1690-1701
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- Biofilm formation and hemolysis induced by Staphylococcus aureus are closely related to pathogenicity. However, no drugs exist to inhibit biofilm formation or hemolysis induced by S. aureus in clinical practice. This study found diclazuril had antibacterial action against S. aureus with minimum inhibitory concentrations (MICs) at 50 μM for both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Diclazuril (at 1/4× or 1/8× MICs) significantly inhibited biofilm formation of S. aureus under static or flow-based conditions and also inhibited hemolysis induced by S. aureus. The RNA levels of transcriptional regulatory genes (agrA, agrC, luxS, sarA, sigB, saeR, saeS), biofilm formation-related genes (aur, bap, ccpA, cidA, clfA, clfB, fnbA, fnbB, icaA, icaB, sasG), and virulence-related genes (hla, hlb, hld, hlg, lukDE, lukpvl-S, spa, sbi, alpha-3 PSM, beta PSM, coa) of S. aureus were decreased when treated by diclazuril (at 1/4× MIC) for 4 h. The diclazuril nonsensitive clones of S. aureus were selected in vitro by induction of wildtype strains for about 90 days under the pressure of diclazuril. Mutations in the possible target genes of diclazuril against S. aureus were detected by whole-genome sequencing. This study indicated that there were three amino acid mutations in the diclazuril nonsensitive clone of S. aureus, two of which were located in genes with known function (SMC-Scp complex subunit ScpB and glyceraldehyde-3-phosphate dehydrogenase 1, respectively) and one in a gene with unknown function (hypothetical protein). Diclazuril showed a strong inhibition effect on planktonic cells and biofilm formation of S. aureus with the overexpression of the scpB gene.
- Subjects :
- 0301 basic medicine
030106 microbiology
Biofilm
Wild type
Virulence
medicine.disease
medicine.disease_cause
Hemolysis
Microbiology
03 medical and health sciences
chemistry.chemical_compound
030104 developmental biology
Infectious Diseases
chemistry
Diclazuril
Staphylococcus aureus
CCPA
medicine
Regulator gene
Subjects
Details
- ISSN :
- 23738227
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- ACS Infectious Diseases
- Accession number :
- edsair.doi...........49538674dab4ee356464fffc0e955144