Back to Search
Start Over
Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding
- Source :
- Surface and Coatings Technology. 386:125466
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- In this work, we present a wear-resistant coating fabricated by non-vacuum electron beam cladding of Fe62Cr10Nb12B16 at.% powder on a mild steel substrate. The protective coating was 1.3 mm thick, dense, and exhibited an α-(Fe,Cr) matrix reinforced by a significant fraction of hard borides formed upon solidification. Micrometric and nanometric borides homogeneously dispersed within the matrix were formed due to the homogeneous melting and the relatively fast cooling to suppress the excessive phase growth. An intimate metallurgically bonded interface between the coating and substrate was characterized by low compositional dilution and a fine eutectic-like transition zone microstructure anchoring the dissimilar materials. The coatings displayed a higher wear resistance compared to the mild steel substrate, showing specific wear rates, κ, about one order of magnitude lower (10−5 against 10−4 mm3/N.m, respectively). The abrasive wear mechanism was dominant for the coating sample when tested at low sliding velocity, 10 cm/s, due to the detachment of hard borides from the surface and their incorporation into the tribosystem. The adhesive wear mechanism was found to be dominant at higher sliding velocities of 20 and 40 cm/s. Dry sand/rubber wheel testing revealed the higher resistance of the coating against abrasive wear compared to the mild steel substrate. Regardless of the wear mechanism, the Fe62Cr10Nb12B16 at.% coatings showed a superior sliding and abrasive wear resistance and represented an interesting protective measure to extend the service of inexpensive mild steel components.
- Subjects :
- Cladding (metalworking)
Materials science
Abrasive
Surfaces and Interfaces
General Chemistry
engineering.material
Condensed Matter Physics
Microstructure
Surfaces, Coatings and Films
chemistry.chemical_compound
Coating
Natural rubber
chemistry
visual_art
Boride
Materials Chemistry
engineering
visual_art.visual_art_medium
Cathode ray
Composite material
Order of magnitude
Subjects
Details
- ISSN :
- 02578972
- Volume :
- 386
- Database :
- OpenAIRE
- Journal :
- Surface and Coatings Technology
- Accession number :
- edsair.doi...........48d1249c536c8c7ecd563363a5223852
- Full Text :
- https://doi.org/10.1016/j.surfcoat.2020.125466