Back to Search Start Over

Tetraphenylpyrazine-Based Manganese Metal–Organic Framework as a Multifunctional Sensor for Cu2+, Cr3+, MnO4–, and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate

Authors :
Bin Zhao
Yi Zou
Da-Bin Qin
Xiangyu Zhang
Kun Huang
Source :
Inorganic Chemistry. 60:11222-11230
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

A tetraimidazole-decorating tetraphenylpyrazine has been designed and utilized for the fabrication of a novel metal-organic framework (MOF), denoted as {Mn(Tipp)(A)2}n·2H2O (TippMn, where Tipp = 2,3,5,6-tetrakis[4-[(1H-imidazol-1-yl)methyl]phenyl]pyrazine and A = deprotonation of 1,4-naphthalenedicarboxylic acid), through hydrothermal synthesis. Structural analysis reveals that TippMn possesses a 2-fold-interpenetrated 4,8-connected three-dimensional (3D) network with an unprecedented {416·612}{44·62} topology. Fluorescent spectral investigations indicate that TippMn shows discriminative fluorescence when treated by Cr3+ and Cu2+, giving an INHIBIT logical gate performance. Meanwhile, TippMn can be further used as a sensor for MnO4- and 2,4,6-trinitrophenol (TNP) by fluorescence quenching. Notably, the sensing processes toward Cu2+, Cr3+, MnO4-, and TNP are labeled with high selectivity and sensitivity, quick response, and good recyclability. It is anticipated that this MOF-based versatile sensor could shed light on the exploration of MOFs for fluorescent sensors, optical switches, etc.

Details

ISSN :
1520510X and 00201669
Volume :
60
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi...........48639f6844f78e84e56ba4671416211a