Back to Search Start Over

Quantum-Dot Cellular Automata at a Molecular Scale

Authors :
Yuliang Wang
Bindhu Varughese
Sudha Chellamma
Frank Peiris
Marya Lieberman
Craig S. Lent
Gary H. Bernstein
Gregory L. Snider
Source :
Annals of the New York Academy of Sciences. 960:225-239
Publication Year :
2006
Publisher :
Wiley, 2006.

Abstract

Quantum-dot cellular automata (QCA) is a scheme for molecular electronics in which information is transmitted and processed through electrostatic interactions between charges in an array of quantum dots. QCA wires, majority gates, clocked cell operation, and (recently) true power gain between QCA cells has been demonstrated in a metal-dot prototype system at cryogenic temperatures. Molecular QCA offers very high device densities, low power dissipation, and ways to directly integrate sensors with QCA logic and memory elements. A group of faculty at Notre Dame has been working to implement QCA at the size scale of molecules, where room-temperature operation is theoretically predicted. This paper reviews QCA theory and the experimental measurements in metal-dot QCA systems, and describes progress toward making QCA molecules and working out surface attachment chemistry compatible with QCA operation.

Details

ISSN :
17496632 and 00778923
Volume :
960
Database :
OpenAIRE
Journal :
Annals of the New York Academy of Sciences
Accession number :
edsair.doi...........483325730dc8f7cd783159d7046989a3
Full Text :
https://doi.org/10.1111/j.1749-6632.2002.tb03037.x