Back to Search
Start Over
Optimal Extension of Positive Order Continuous Operators with Values in Quasi-Banach Lattices
- Source :
- Siberian Mathematical Journal. 61:884-894
- Publication Year :
- 2020
- Publisher :
- Pleiades Publishing Ltd, 2020.
-
Abstract
- The goal of this article is to present some method of optimal extension of positive order continuous and $ \sigma $ -order continuous operators on quasi-Banach function spaces with values in Dedekind complete quasi-Banach lattices. The optimal extension of such an operator is the smallest extension of the Bartle–Dunford–Schwartz type integral. It is also shown that if a positive operator sends order convergent sequences to quasinorm convergent sequences, then its optimal extension is the Bartle–Dunford–Schwartz type integral.
- Subjects :
- Mathematics::Functional Analysis
Pure mathematics
Function space
General Mathematics
010102 general mathematics
Sigma
Extension (predicate logic)
Type (model theory)
01 natural sciences
Operator (computer programming)
0103 physical sciences
Order (group theory)
Quasinorm
Dedekind cut
010307 mathematical physics
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 15739260 and 00374466
- Volume :
- 61
- Database :
- OpenAIRE
- Journal :
- Siberian Mathematical Journal
- Accession number :
- edsair.doi...........47c3b7084e52adb4e537fdca6053e95d
- Full Text :
- https://doi.org/10.1134/s0037446620050122