Back to Search Start Over

Progress towards ignition on the National Ignition Facility

Authors :
Hans W. Herrmann
Charles Yeamans
J. D. Moody
E. L. Dewald
Gary Grim
Gilbert Collins
John Kline
Nobuhiko Izumi
S. P. Hatchett
K. C. Chen
D. E. Hinkel
P. M. Celliers
Riccardo Betti
A. V. Hamza
A. Nikroo
Edward I. Moses
Scott Sepke
Paul J. Wegner
Johan Frenje
Evan Mapoles
M. Meezan
Cliff Thomas
P. T. Springer
H.-S. Park
C. L. Olson
Pierre Michel
M. M. Marinak
P. K. Patel
J. D. Lindl
D. A. Callahan
Daniel Clark
V. A. Smalyuk
M. Mauldin
Andrew MacPhee
M. Gatu Johnson
T. Ma
Fredrick Seguin
Damien Hicks
Jose Milovich
Wolfgang Stoeffl
O. L. Landen
M. J. Edwards
R. J. Leeper
J. D. Sater
B. Jacoby
M. Hoppe
D. K. Bradley
Art Pak
L. J. Atherton
N. Hein
J. P. Knauer
J. D. Kilkenny
V. Yu. Glebov
M. D. Rosen
L. J. Suter
G. A. Kyrala
E. M. Giraldez
D. A. Shaughnessy
Tilo Doeppner
Robert L. Kauffman
C. J. Cerjan
Doug Wilson
Siegfried Glenzer
Kathy Opachich
L. A. Bernstein
Michael Farrell
Sean Regan
H. G. Rinderknecht
S. N. Dixit
D. H. Munro
Mark D. Wilke
Richard Town
Laurent Divol
T. C. Sangster
P. W. McKenty
D. H. Schneider
B. J. Kozioziemski
O. S. Jones
B. J. MacGowan
Matthew Moran
Harry Robey
Steven Ross
R. A. Lerche
D. H. Edgell
D. L. Bleuel
James E. Fair
K. Widman
Christian Stoeckl
T. G. Parham
J. A. Koch
R. Benedetti
T. R. Boehly
S. V. Weber
R. Tommasini
Steven H. Batha
Jay D. Salmonson
D. R. Harding
S. Le Pape
J. A. Caggiano
Bruce Remington
Alex Zylstra
R. J. Fortner
Joseph Ralph
W. W. Hsing
B. A. Hammel
Daniel H. Kalantar
R. D. Petrasso
A. J. Mackinnon
S. W. Haan
Brian Spears
K. N. LaFortune
Source :
Physics of Plasmas. 20:070501
Publication Year :
2013
Publisher :
AIP Publishing, 2013.

Abstract

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm3 with an areal density (ρR) of ∼1.5 g/cm2, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm2, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

Details

ISSN :
10897674 and 1070664X
Volume :
20
Database :
OpenAIRE
Journal :
Physics of Plasmas
Accession number :
edsair.doi...........477d89af3f3c9f6ab3030a725c047a43