Back to Search
Start Over
Spectral mapping theorems for differentiable $$C_0$$ semigroups
- Source :
- Rendiconti del Circolo Matematico di Palermo Series 2. 70:23-30
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Let $$(T(t))_{t\ge 0}$$ be a $$C_0$$ semigroup on a Banach space X with infinitesimal generator A. In this work, we give conditions for which the spectral mapping theorem $$\sigma _{*}(T(t))\backslash \{0\}=\{e^{\lambda s}, \lambda \in \sigma _{*}(A)\}$$ holds, where $$\sigma _*$$ can be equal to the essential, Browder and Kato spectrum. Also, we will be interested in the relations between the spectrum of A and the spectrum of the $$n^{th}$$ derivative $$T(t)^{(n)}$$ of a differentiable $$C_0$$ semigroup $$(T(t))_{t\ge 0}$$ .
Details
- ISSN :
- 19734409 and 0009725X
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- Rendiconti del Circolo Matematico di Palermo Series 2
- Accession number :
- edsair.doi...........47782a36dc47112a171c0bd948fda5a1
- Full Text :
- https://doi.org/10.1007/s12215-020-00480-y