Back to Search Start Over

Spectral mapping theorems for differentiable $$C_0$$ semigroups

Authors :
Mohammed Karmouni
Hamid Boua
Abdelaziz Tajmouati
Source :
Rendiconti del Circolo Matematico di Palermo Series 2. 70:23-30
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Let $$(T(t))_{t\ge 0}$$ be a $$C_0$$ semigroup on a Banach space X with infinitesimal generator A. In this work, we give conditions for which the spectral mapping theorem $$\sigma _{*}(T(t))\backslash \{0\}=\{e^{\lambda s}, \lambda \in \sigma _{*}(A)\}$$ holds, where $$\sigma _*$$ can be equal to the essential, Browder and Kato spectrum. Also, we will be interested in the relations between the spectrum of A and the spectrum of the $$n^{th}$$ derivative $$T(t)^{(n)}$$ of a differentiable $$C_0$$ semigroup $$(T(t))_{t\ge 0}$$ .

Details

ISSN :
19734409 and 0009725X
Volume :
70
Database :
OpenAIRE
Journal :
Rendiconti del Circolo Matematico di Palermo Series 2
Accession number :
edsair.doi...........47782a36dc47112a171c0bd948fda5a1
Full Text :
https://doi.org/10.1007/s12215-020-00480-y