Back to Search
Start Over
Implementation of a genetically tuned neural platform in optimizing fluorescence from receptor-ligand binding interactions on microchips
- Source :
- ELECTROPHORESIS. 33:2711-2717
- Publication Year :
- 2012
- Publisher :
- Wiley, 2012.
-
Abstract
- This paper describes the use of a genetically tuned neural network platform to optimize the fluorescence realized upon binding 5-carboxyfluorescein-D-Ala-D-Ala-D-Ala (5-FAM-(D-Ala)(3) ) (1) to the antibiotic teicoplanin from Actinoplanes teichomyceticus electrostatically attached to a microfluidic channel originally modified with 3-aminopropyltriethoxysilane. Here, three parameters: (i) the length of time teicoplanin was in the microchannel; (ii) the length of time 1 was in the microchannel, thereby, in equilibrium with teicoplanin, and; (iii) the amount of time buffer was flushed through the microchannel to wash out any unbound 1 remaining in the channel, are examined at a constant concentration of 1, with neural network methodology applied to optimize fluorescence. Optimal neural structure provided a best fit model, both for the training set (r(2) = 0.985) and testing set (r(2) = 0.967) data. Simulated results were experimentally validated demonstrating efficiency of the neural network approach and proved superior to the use of multiple linear regression and neural networks using standard back propagation.
Details
- ISSN :
- 01730835
- Volume :
- 33
- Database :
- OpenAIRE
- Journal :
- ELECTROPHORESIS
- Accession number :
- edsair.doi...........47555fd1c0ec1ba2aade8d4473790ea8
- Full Text :
- https://doi.org/10.1002/elps.201200103