Back to Search
Start Over
Generalized small-dimension lemma and d’Alembert type functional equation on compact groups
- Source :
- Boletín de la Sociedad Matemática Mexicana. 27
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- Let $${\mathbb {C}}$$ be the set of complex numbers and $$\sigma $$ be a continuous automorphism and $$\tau $$ be a continuous anti-automorphism such that $$\sigma ^{2}=\tau ^{2}=id.$$ The purpose of this paper is to generalize the small-dimension lemma [20, Small Dimension Lemma] and by help of it we find on any compact group G the non-zero continuous solutions $$f:G\rightarrow {\mathbb {C}}$$ of the functional equation $$\begin{aligned} f(x\sigma (y))+f(\tau (y)x)=2f(x)f(y), \ \ \ x,y \in G, \end{aligned}$$ in terms of continuous characters of G.
Details
- ISSN :
- 22964495 and 1405213X
- Volume :
- 27
- Database :
- OpenAIRE
- Journal :
- Boletín de la Sociedad Matemática Mexicana
- Accession number :
- edsair.doi...........461902f6029fd9af9e553133df92354b