Back to Search Start Over

Modification and stabilizing effects of PEG on resveratrol-loaded solid lipid nanoparticles

Authors :
Zhen Wen
Wan-Ni Xiao
Jing Lin
Yi-Ai Wen
Jun-Qing Su
Zong-Kun Zheng
Source :
Journal of the Iranian Chemical Society. 13:881-890
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Resveratrol-loaded solid lipid nanoparticles (SLNs) modified by polyethylene glycol (PEG2000) (RES–PEG–SLNs) were prepared to study the stabilizing influences of PEG2000 on SLNs properties including loading capacity, particle size, photostability, and release. The micromorphology, particle size distribution, drug–lipid–modifier interaction and crystalline structure were characterized to elucidate stabilizing effects of PEG2000 on SLNs. Compared with ordinary SLNs, SLNs modified by PEG2000 at relatively low amounts of [m(PEG2000):m(lipids) = 1:10] exhibit high drug loading, steady nanoparticle size distributions, photostability and sustained release. According to characterizations, RES–PEG–SLNs formation is dependent on the physical interactions of drug–lipid–modifier. Since PEG2000 is doped into lipid matrix in a non-crystalline state, the lipids crystalline arrangement is disrupted. Additionally, RES–PEG–SLNs are crystallized in a PEG2000/lipid eutectic mixture rather than a simple mixture, inhibiting the lipid polymorphism transformation from α- to β-form, and therefore preventing drug exclusion from the lipid matrix. The PEG2000/lipid matrix contains lattice defects, which allow for the incorporation of more resveratrol and preventing it from photodegradation effectively. In contrast to the burst release of SLNs modified without PEG2000, resveratrol is released more slowly from the lattice defects in lipid matrix of RES–PEG–SLNs, resulting in a sustained release fitted by a two-stage exponential kinetic equation. PEG2000 is distributed on the RES–PEG–SLNs surface, increasing repulsion between nanoparticles and avoiding particles aggregation. These results confirm that both matrix doping effects and surface steric hindrance produced by the presence of PEG2000 play important roles in maintaining high loadings, nanoparticle size, photostability and sustained release.

Details

ISSN :
17352428 and 1735207X
Volume :
13
Database :
OpenAIRE
Journal :
Journal of the Iranian Chemical Society
Accession number :
edsair.doi...........4607f68ae2b62cf48e3bc8fc5d2db57e
Full Text :
https://doi.org/10.1007/s13738-015-0803-9