Back to Search Start Over

Hematopoietic cellular aging is not accelerated during the first 2 years of life in children born preterm

Authors :
Zahra Haider
Ewa Henckel
Mattias Landfors
Kajsa Bohlin
Sofie Degerman
Paraskevi Kosma
Magnus Hultdin
Source :
Pediatric Research. 88:903-909
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Prematurity in itself and exposure to neonatal intensive care triggers inflammatory processes and oxidative stress, leading to risk for disease later in life. The effects on cellular aging processes are incompletely understood. Relative telomere length (RTL) was measured by qPCR in this longitudinal cohort study with blood samples taken at birth and at 2 years of age from 60 children (16 preterm and 44 term). Viral respiratory infections the first year were evaluated. Epigenetic biological DNA methylation (DNAm) age was predicted based on methylation array data in 23 children (11 preterm and 12 term). RTL change/year and DNAm age change/year was compared in preterm and term during the 2 first years of life. Preterm infants had longer telomeres than term born at birth and at 2 years of age, but no difference in telomere attrition rate could be detected. Predicted epigenetic DNAm age was younger in preterm infants, but rate of DNAm aging was similar in both groups. Despite early exposure to risk factors for accelerated cellular aging, children born preterm exhibited preserved telomeres. Stress during the neonatal intensive care period did not reflect accelerated epigenetic DNAm aging. Early-life aging was not explained by preterm birth.

Details

ISSN :
15300447 and 00313998
Volume :
88
Database :
OpenAIRE
Journal :
Pediatric Research
Accession number :
edsair.doi...........45df1c94170464a6ad6f670e472a179c
Full Text :
https://doi.org/10.1038/s41390-020-0833-6