Back to Search Start Over

Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods

Authors :
Juan Qi
Hua Li
Chunhua Yan
Hongsheng Tang
Tianlong Zhang
Source :
Journal of Analytical Atomic Spectrometry. 32:1960-1965
Publication Year :
2017
Publisher :
Royal Society of Chemistry (RSC), 2017.

Abstract

The classification and identification of coal ash contributes to recycling and reuse of metallurgical waste. This work explores the combination of the laser-induced breakdown spectroscopy (LIBS) technique and independent component analysis-wavelet neural network (ICA-WNN) for the classification analysis of coal ash. A series of coal ash samples were compressed into pellets and prepared for LIBS measurements. At first, principal component analysis (PCA) was used to identify and remove abnormal spectra in order to optimize the training set for the WNN model. And then, ICA was employed to select and optimize input variables for the WNN model. The classification of coal ash was carried out by using the WNN model with optimized model parameters (the number of hidden neurons (NHN), the number of iterations (NI), the learning rate (LR) and the momentum) and input variables optimized by ICA. Under the optimized WNN model parameters, the coal ash samples for test sets were identified and classified by using WNN and artificial neural network (ANN) models, and the WNN model shows a better classification performance. It was confirmed that the LIBS technique coupled with the WNN method is a promising approach to achieve the online analysis and process control of the coal industry.

Details

ISSN :
13645544 and 02679477
Volume :
32
Database :
OpenAIRE
Journal :
Journal of Analytical Atomic Spectrometry
Accession number :
edsair.doi...........446062e206293f16bf2cc84c3e2d3fa6
Full Text :
https://doi.org/10.1039/c7ja00218a