Back to Search Start Over

A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems

Authors :
Ümit Ağbulut
Ali Etem Gürel
Gökhan Yildiz
Source :
International Journal of Refrigeration. 129:342-364
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

The popularity of the studies on improving the thermal properties of base fluids in thermal engineering applications is considerably increasing day by day. Recently, many researchers have proved that the use of nanoparticles along with the base fluids exhibits better thermal properties as well as better system performance. In line with this, it is noticed a respectful increase in the number of studies regarding nanoparticle use in refrigeration systems. Accordingly, the present paper aims to summarize the preparation of nanofluids, the variation of thermophysical properties, the stability of nanofluids, impacts on the system performances of nanofluid usage, limitations, and challenges of nanoparticle usage, particularly in the refrigeration systems. Previous studies revealed that the heat transfer mechanism of the lubricants and refrigerants is highly improved with nanoparticle addition. It is observed that the increase in thermal properties becomes more visible as nanoparticle fractions increase, but this case may worsen the viscosity of nanofluids. The enhanced thermal properties contribute to improving refrigeration system performance. Many papers emphasize that nanoparticle-doping triggers an increase in system performance by both reducing the compressor power input and increasing the cooling capacity of the refrigeration systems. However, some critical points such as stability, homogeneous distribution, agglomeration, and sedimentation considerably influence the sustainability of performance improvement. In conclusion, nanoparticle-doping for refrigeration systems can be accepted as a very promising way of improving the performance, nevertheless, some questions such as high cost, toxic effect, poor stabilization, erosion effect, high viscosity, clogging issues should be more addressed in the future.

Details

ISSN :
01407007
Volume :
129
Database :
OpenAIRE
Journal :
International Journal of Refrigeration
Accession number :
edsair.doi...........444d04eaaad0d6ddddd1c16d04dd73a5
Full Text :
https://doi.org/10.1016/j.ijrefrig.2021.05.016