Back to Search
Start Over
Thermodynamic and kinetic analysis of CrB2 and VB2 formation in molten Al–Cr–V–B alloy
- Source :
- Transactions of Nonferrous Metals Society of China. 31:3162-3176
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Transition metal impurities such as chromium (Cr) and vanadium (V) in solution deteriorate electrical conductivity of smelter grade aluminium (Al). These impurities can be removed from solution via boron treatment in which borides form upon their in-situ reaction with boron (B)-bearing substances. However, Cr removal from smelter grade Al solution is not well understood. A disagreement related to chromium boride (CrB2) formation in molten Al in the presence of other transition metals (V, Ti, Zr, Fe) by adding Al–B master alloy has been reported in literatures. This study presents an effort to understand the mechanism of Cr removal from Al–0.50%Cr–0.50%V (mass fraction) alloy by adding Al–B (AlB12) master alloy at 1023 K in the Al alloy solution. Results indicate that Cr removal from molten Al–0.50%Cr–0.50%V alloy by forming stable borides cannot be achieved at 1023 K; whereas excess of B in the solution preferentially forms aluminium boride (AlB2) over CrB2 during boron treatment of molten Al. The underlying kinetics of V removal from molten Al–0.50%Cr–0.50%V alloy revealed that early reaction stage is controlled by [B]/[V] mass transfer through liquid phase and mass transfer coefficient (km) was measured to be 9.6×10−4 m/s. The later reaction stage was controlled by [B]/[V] diffusion through boride (VB2) ring. This study, therefore, advocates to investigate alternative ways to remove Cr from molten Al.
- Subjects :
- Materials science
Alloy
Metals and Alloys
Analytical chemistry
chemistry.chemical_element
Vanadium
engineering.material
Geotechnical Engineering and Engineering Geology
Condensed Matter Physics
chemistry.chemical_compound
Chromium
chemistry
Transition metal
Aluminium
Impurity
Boride
Materials Chemistry
engineering
Boron
Subjects
Details
- ISSN :
- 10036326
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Transactions of Nonferrous Metals Society of China
- Accession number :
- edsair.doi...........44424685a358128003bbc08be7d75d40
- Full Text :
- https://doi.org/10.1016/s1003-6326(21)65723-0