Back to Search Start Over

The physical basis for gas transport through polar firn: a case study at Summit, Greenland

Authors :
M. R. Albert
A. C. Adolph
Publication Year :
2013
Publisher :
Copernicus GmbH, 2013.

Abstract

Compared to other natural porous materials, relatively little is known about the physical nature of polar firn. This intricate network of ice and pore space that comprises the top 60–100 m of the polar ice sheets is the framework that forms the natural archive of past climate information. Despite the many implications for ice core interpretation, direct measurements of physical properties throughout the firn column are limited. Models of gas transport through firn are used to interpret in-situ chemical data which is retrieved to analyze past atmospheric composition. These traditional models treat the firn as a "black box," with gas transport parameters tuned to match gas concentrations with depth to known atmospheric histories. Though this method has been largely successful and provided very useful insights, there are still many questions and uncertainties to be addressed. This work seeks to understand the impact of firn structure on gas transport in firn from a first principles standpoint through direct measurements of permeability, gas diffusivity and microstructure. The relationships between gas transport properties and microstructure will be characterized and compared to existing relationships for general porous media. Direct measurements of gas diffusivity are compared to diffusivities deduced from models based on firn air chemical sampling. Our comparison illuminates the primary importance of including microstructural parameters, beyond just porosity or density, in mass transport modeling, and it provides insights about the nature of gas transport throughout the firn column. Guidance is provided for development of next-generation firn air transport models.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........442af18adec58faccaa7e9b26f462a1f