Back to Search Start Over

A novel m6A reader Prrc2a controls oligodendroglial specification and myelination

Authors :
Fengchao Wang
Yun-Gui Yang
Jinhua Zhang
Shukun Wang
Weiyi Lai
Jian-Guang Sun
Yuhao Gao
Ting Zhang
Zengqiang Yuan
Qingyang Zhang
Rong Wu
Yajin Liao
Hailin Wang
Ang Li
Yousheng Shu
Yujie Xiao
Yu-Sheng Chen
Jun Ma
Bao-Fa Sun
Xin Yang
Xiaolong Qi
Source :
Cell Research. 29:23-41
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

While N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, is linked to cell differentiation and tissue development, the biological significance of m6A modification in mammalian glial development remains unknown. Here, we identify a novel m6A reader, Prrc2a (Proline rich coiled-coil 2 A), which controls oligodendrocyte specification and myelination. Nestin-Cre-mediated knockout of Prrc2a induces significant hypomyelination, decreased lifespan, as well as locomotive and cognitive defects in a mouse model. Further analyses reveal that Prrc2a is involved in oligodendrocyte progenitor cells (OPCs) proliferation and oligodendrocyte fate determination. Accordingly, oligodendroglial-lineage specific deletion of Prrc2a causes a similar phenotype of Nestin-Cre-mediated deletion. Combining transcriptome-wide RNA-seq, m6A-RIP-seq and Prrc2a RIP-seq analysis, we find that Olig2 is a critical downstream target gene of Prrc2a in oligodendrocyte development. Furthermore, Prrc2a stabilizes Olig2 mRNA through binding to a consensus GGACU motif in the Olig2 CDS (coding sequence) in an m6A-dependent manner. Interestingly, we also find that the m6A demethylase, Fto, erases the m6A modification of Olig2 mRNA and promotes its degradation. Together, our results indicate that Prrc2a plays an important role in oligodendrocyte specification through functioning as a novel m6A reader. These findings suggest a new avenue for the development of therapeutic strategies for hypomyelination-related neurological diseases.

Details

ISSN :
17487838 and 10010602
Volume :
29
Database :
OpenAIRE
Journal :
Cell Research
Accession number :
edsair.doi...........440e0f185721dd9ffed2c363e02ab503
Full Text :
https://doi.org/10.1038/s41422-018-0113-8