Back to Search Start Over

[Untitled]

Authors :
Chizuka Ide
Masanori Taketomi
Naoya Matsumoto
Shushovan Chakrabortty
Kazushi Kimura
Masaaki Kitada
Source :
Journal of Neurocytology. 29:707-717
Publication Year :
2000
Publisher :
Springer Science and Business Media LLC, 2000.

Abstract

The epithelial cells of the choroid plexus are a continuation of the ventricular ependymal cells and are regarded as modified ependymal cells. The present study was carried out to determine the influence of choroid plexus ependymal cells (CPECs) on axonal growth in vitro. Choroid plexuses were dissected from the fourth ventricle of postnatal day-1–10 mice, mechanically dissociated, and plated in fibronectin-coated culture dishes. CPECs had spread into monolayers with few endothelial cells in 3-week cultures. Some macrophages were scattered on the monolayer of CPECs. Dorsal root ganglia (DRG) were excised from mouse fetuses of 14-day gestation, dissociated with trypsin and cocultured on the CPEC monolayers. For comparison, dissociated DRG neurons were cocultured on astrocyte monolayers or cultured on laminin-coated plates. After 4.5 h culturing, the cultures were fixed and immunohistochemically double-stained for neurites and CPECs using antibodies against β-tubulin III and S-100 β, respectively. It was demonstrated that neurons extended many long neurites with elaborate branching on the surface of S-100-stained CPECs. In contrast, DRG neurons cultured on the astrocytes and on the laminin-coated plates had much shorter primary neurites with fewer branches than those cultured on the CPECs. The total length of neurites including primary neurites and their branches, of a single DRG neuron was 285 ± 14, 395 ± 15 and 565 ± 12 μm on the laminin-coated plates, on astrocytes and on CPECs, respectively. Scanning electron microscopy revealed extension of neurites with well-developed growth cones on the ependymal cells. These results suggest that CPECs have a great capacity to promote neurite outgrowth from DRG neurons in vitro.

Details

ISSN :
03004864
Volume :
29
Database :
OpenAIRE
Journal :
Journal of Neurocytology
Accession number :
edsair.doi...........431b69d372f9fd28b17e9c8bb57b132c
Full Text :
https://doi.org/10.1023/a:1010930819854