Back to Search Start Over

Multi-view attribute reduction model for traffic bottleneck analysis

Authors :
Yumin Chen
Duoqian Miao
Longbing Cao
Xiaodong Yue
B. Xu
Source :
Knowledge-Based Systems. 86:1-10
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

In the field of traffic bottleneck analysis, it is expected to discover traffic congestion patterns from the reports of road conditions. However, data patterns mined by existing KDD algorithms may not coincide with the real application requirements. Different from academic researchers, traffic management officers do not pursue the most frequent patterns but always hold multiple views for mining task to facilitate traffic planning. They expect to study the correlation between traffic congestion and various kinds of road properties, especially the road properties easily to be improved. In this multi-view analysis, each view actually denotes a kind of user preference of road properties. Thus it is required to integrate user-defined attribute preferences into pattern mining process. To tackle this problem, we propose a multi-view attribute reduction model to discover the patterns of user interests. In this model, user views are expressed with attribute preferences and formally represented by attribute orders. Based on this, we implement a workflow of multi-view traffic bottleneck analysis, which consists of data preprocessing, preference representation and congestion pattern mining. We validate our approach based on the reports of road conditions from Shanghai. Experimental results show that the resultant multi-view mining outcomes are effective for analyzing congestion causes and traffic management.

Details

ISSN :
09507051
Volume :
86
Database :
OpenAIRE
Journal :
Knowledge-Based Systems
Accession number :
edsair.doi...........4311f41fb532f43ace38cb3ddf6b3141
Full Text :
https://doi.org/10.1016/j.knosys.2015.03.022