Back to Search Start Over

A rapidly room-temperature-synthesized Cd/ZnS:Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction

Authors :
Wei Zhou
Xianguang Meng
Shanshan Liu
Yi Shen
Jinhua Ye
Peixiao Zong
Guifu Zuo
Jian Ren
Hong Pang
Xiongfeng Zeng
Source :
Applied Catalysis B: Environmental. 237:68-73
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

An ideal photocatalyst that can promisingly convert CO2 should have suitable band gap and fully consider the activation of reaction. However, well-designed photocatalytic materials with these aspects are very limited. This study reports a highly efficient CO2 reduction photocatalyst based on ZnS nanocrystals which can be rapidly synthesized at room temperature and operated under solar light irradiation at all-inorganic reaction system. Two functional elements, Cu and Cd, are respectively used as dopant and cocatalyst of ZnS nanocrystal for selective CO2 reduction. Cu+ doping expands the photoabsorption of ZnS into visible light region and the simultaneous Cd2+ surface modification significantly improves the activity of CO2 reduction with 99% formic acid selectivity. A combination of charge density distribution and electronic state studies reveal that the Cd s orbital displays obviously higher density of states near band-edge with a relatively lower lying band center than that of Zn s orbital. This will greatly favor the charge transfer from conduction band of ZnS to the surface state created by Cd2+ for catalyzing CO2 reduction.

Details

ISSN :
09263373
Volume :
237
Database :
OpenAIRE
Journal :
Applied Catalysis B: Environmental
Accession number :
edsair.doi...........42c20fafda3b75e3762ae1a8922b4a91