Back to Search
Start Over
Gliding Motion Regulation of a Robotic Dolphin Based on a Controllable Fluke
- Source :
- IEEE Transactions on Industrial Electronics. 67:2945-2953
- Publication Year :
- 2020
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2020.
-
Abstract
- This paper investigates a controllable fluke's regulation effect on the gliding motion of a self-propelled robotic dolphin in both theory and practice. In theory, based on a dynamic model, the gliding equilibria is first analyzed. Through deriving the explicit expressions of the pitch angle, gliding angle, and velocities, we explore how the deflection angle of the controllable fluke changes the gliding performance. Then, aided by these theoretical analyses, a pitch control strategy relying on the fluke is constructed. In simulations, the robotic dolphin is able to track a given pitch angle during gliding, directly through adopting this control strategy to regulate the fluke's deflection angle. Furthermore, extensive gliding experiments in different fluke's deflection angles are carried out. From the statistical data, we further explore the remarkable effects of the controllable fluke on the gliding performance in practice. Besides, the other pitch control experiment is also executed to validate the effectiveness of the proposed control approach. The results of this paper shed light on improving the gliding performance of the robotic dolphin in future mechanical design and gliding control.
- Subjects :
- Robot kinematics
Pitch control
Control and Systems Engineering
Control theory
Computer science
Deflection (engineering)
020208 electrical & electronic engineering
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
Pitch angle
Electrical and Electronic Engineering
Subjects
Details
- ISSN :
- 15579948 and 02780046
- Volume :
- 67
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Industrial Electronics
- Accession number :
- edsair.doi...........42bc19b54c81ce095d1f5240a65ad70e
- Full Text :
- https://doi.org/10.1109/tie.2019.2913810