Back to Search Start Over

Surface characterization of oligonucleotides immobilized on polymer surfaces

Authors :
Ralf Lenigk
Jonathan P. Wright
Dan V. Nicolau
Piotr Grodzinski
Duy K. Pham
Elena P. Ivanova
Source :
SPIE Proceedings.
Publication Year :
2002
Publisher :
SPIE, 2002.

Abstract

The immobilization and hybridization of amino-terminated oligonucleotide strands to cyclo-olefin-copolymer (COC) and polycarbonate (PC) surfaces have been investigated for potential application in micro-PCR devices. The oligonucleotides were covalently bound to the plasma-treated COC and PC surfaces via an N-hydroxy-sulfosuccinimide (NHSS) intermediate. Analysis by AFM showed that the oligonucleotides were present on the surfaces as lumps, and that the size, both vertically and laterally, of these lumps on the COC surface was larger compared to the PC surface. The immobilization efficiency of the former was also higher (15.8 x 10 12 molecules / cm 2 ) compared to the latter (3.3 x 10 12 molecules / cm 2 ). The higher efficiency of the COC surface is attributed to the more effective NHSS-functionalization and its higher surface roughness. Subsequent hybridization doubled the height of the lumps, while the lateral dimensions remained essentially unchanged. This is explained in terms of organization of the long probe strands used on the surface as flexible, coil-like polymer chains, which allow the complementary oligonucleotides to bind and increase the height of the lumps. The AFM frictional images showed that the hybridization had the effect of reversing hydrophilicity of the oligonucleotide lumps from being more hydrophilic to more hydrophobic, consistent with the hydrophilic bases of the probe strands being shielded as a result of hybridization.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi...........4290c795c2c85c58d479e125235d69e5
Full Text :
https://doi.org/10.1117/12.471946