Back to Search Start Over

(Short Paper) How to Solve DLOG Problem with Auxiliary Input

Authors :
Akinaga Ueda
Hayato Tada
Kaoru Kurosawa
Source :
Advances in Information and Computer Security ISBN: 9783319979151, IWSEC
Publication Year :
2018
Publisher :
Springer International Publishing, 2018.

Abstract

Let \(\mathbb {G}\) be a group of prime order p with a generator g. We first show that if \(p-1=d_1 \ldots d_t\) and \(g,g^x\), \( g^{x^{(p-1)/d_1}}, \ldots , \ g^{x^{(p-1)/(d_1 \ldots d_{t-1})}}\) are given, then x can be computed in time \( O(\sqrt{d_1}+ \ldots + \sqrt{d_t} ) \) exponentiations. Further suppose that \(p-1=d_1^{e_1} \ldots d_t^{e_t}\), where \(d_1, \ldots , d_t\) are relatively prime. We then show that x can be computed in time \( O(e_1\sqrt{d_1}+\ldots + e_t\sqrt{d_t}) \) exponentiations if g and \( g^{x^{(p-1)/d_i}}, \ldots , g^{x^{(p-1)/d_i^{e_i-1}}} \) are given for \(i=1, \ldots , t\).

Details

ISBN :
978-3-319-97915-1
ISBNs :
9783319979151
Database :
OpenAIRE
Journal :
Advances in Information and Computer Security ISBN: 9783319979151, IWSEC
Accession number :
edsair.doi...........41cb0d830a8fba629bf7c24eeeb368bd