Back to Search
Start Over
New quantum codes from matrix-product codes over small fields
- Source :
- Quantum Information Processing. 19
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- In this paper, we provide methods for constructing Hermitian dual-containing (HDC) matrix-product codes over $$\mathbb {F}_{q^2}$$ from some non-singular matrices and a special sequence of HDC codes and determine parameters of obtained matrix-product codes when the input matrix and sequence of HDC codes satisfy some conditions. Then, using some nested HDC BCH codes with lengths $$n=\frac{q^4-1}{a} (a=1 ~$$ or $$~ a=q\pm 1)$$ , we construct some HDC matrix-product codes with lengths $$N=$$ 2n or 3n and derive nonbinary quantum codes with length N from these matrix-product codes via Hermitian construction. Four classes of quantum codes over $$\mathbb {F}_{q}$$ ( $$3\le q\le 5$$ ) are presented, whose parameters are better than those in the literature. Besides, some of our new quantum codes can exceed the quantum Gilbert-Varshamov (GV) bound.
- Subjects :
- Physics
Discrete mathematics
Sequence
Quantum codes
Statistical and Nonlinear Physics
01 natural sciences
Hermitian matrix
Matrix multiplication
010305 fluids & plasmas
Theoretical Computer Science
Electronic, Optical and Magnetic Materials
Matrix (mathematics)
Modeling and Simulation
0103 physical sciences
Signal Processing
Electrical and Electronic Engineering
010306 general physics
Quantum
BCH code
Quantum computer
Subjects
Details
- ISSN :
- 15731332 and 15700755
- Volume :
- 19
- Database :
- OpenAIRE
- Journal :
- Quantum Information Processing
- Accession number :
- edsair.doi...........41aed49588eb7d9a5337080300931407
- Full Text :
- https://doi.org/10.1007/s11128-020-02722-5