Back to Search Start Over

Silicon nanocrystals in silica—Novel active waveguides for nanophotonics

Authors :
Robert Elliman
Ivan Pelant
Petr Janda
T Ostatnicky
E. Skopalová
R. Tomasiunas
Jan Valenta
Source :
Journal of Luminescence. 121:267-273
Publication Year :
2006
Publisher :
Elsevier BV, 2006.

Abstract

Nanophotonic structures combining electronic confinement in nanocrystals with photon confinement in photonic structures are potential building blocks of future Si-based photonic devices. Here, we present a detailed optical investigation of active planar waveguides fabricated by Si + -ion implantation (400 keV, fluences from 3 to 6×10 17 cm −2 ) of fused silica and thermally oxidized Si wafers. Si nanocrystals formed after annealing emit red-IR photoluminescence (PL) (under UV-blue excitation) and define a layer of high refractive index that guides part of the PL emission. Light from external sources can also be coupled into the waveguides (directly to the polished edge facet or from the surface by applying a quartz prism coupler). In both cases the optical emission from the sample facet exhibits narrow polarization-resolved transverse electric and transverse magnetic modes instead of the usual broad spectra characteristic of Si nanocrystals. This effect is explained by a theoretical model which identifies the microcavity-like peaks as leaking modes propagating below the waveguide/substrate boundary. We present also permanent changes induced by intense femtosecond laser exposure, which can be applied to write structures like gratings into the Si-nanocrystalline waveguides. Finally, we discuss the potential for application of these unconventional and relatively simple all-silicon nanostructures in future photonic devices.

Details

ISSN :
00222313
Volume :
121
Database :
OpenAIRE
Journal :
Journal of Luminescence
Accession number :
edsair.doi...........40f3f33a755023dcfd1cc1476c832393
Full Text :
https://doi.org/10.1016/j.jlumin.2006.08.004