Back to Search Start Over

Universal Deformation Rings of Modules over Self-injective Cluster-Tilted Algebras Are Trivial

Authors :
José A. Vélez-Marulanda
Isaías David Marín Gaviria
Source :
Algebra Colloquium. 28:269-280
Publication Year :
2021
Publisher :
World Scientific Pub Co Pte Lt, 2021.

Abstract

Let [Formula: see text] be a fixed algebraically closed field of arbitrary characteristic, let [Formula: see text] be a finite dimensional self-injective [Formula: see text]-algebra, and let [Formula: see text] be an indecomposable non-projective left [Formula: see text]-module with finite dimension over [Formula: see text]. We prove that if [Formula: see text] is the Auslander–Reiten translation of [Formula: see text], then the versal deformation rings [Formula: see text] and [Formula: see text] (in the sense of F.M. Bleher and the second author) are isomorphic. We use this to prove that if [Formula: see text] is further a cluster-tilted [Formula: see text]-algebra, then [Formula: see text] is universal and isomorphic to [Formula: see text].

Details

ISSN :
02191733 and 10053867
Volume :
28
Database :
OpenAIRE
Journal :
Algebra Colloquium
Accession number :
edsair.doi...........4005edfda45f316b2251058ad943d711