Back to Search
Start Over
Resting-State EEG-Based Biometrics with Signals Features Extracted by Multivariate Empirical Mode Decomposition
- Source :
- ICASSP
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- EEG-based biometrics has gained great attention in recent years due to its superiority over traditional biometrics in terms of its resistance to circumvention. While there are numerous choices of data acquisition protocol, the present study is carried out with the least demanding resting-state condition. Motivated by neurophysiological knowledge, a type of novel feature, namely the intrinsic mode correlation (IMCOR), is proposed. It is designed by combining the nonstationary multivariate empirical mode decomposition (NA-MEMD) and the concept of brain connectivity. With machine learning classifiers, our system yields promising performance in a 81-class classification (F1 score: 0.99) within a single session. For 32-class cross-session classification, an F1 score of 0.55 is attained. The results suggest that the proposed method might be vulnerable to temporal effects and between-session variability. This study highlights the uniqueness of the proposed non-stationary and connectivity-based feature and demonstrated its success as a biometrics. Further investigation is needed to make the method practically useful.
- Subjects :
- 021110 strategic, defence & security studies
Biometrics
medicine.diagnostic_test
business.industry
Computer science
Feature extraction
0211 other engineering and technologies
Mode (statistics)
Pattern recognition
02 engineering and technology
Electroencephalography
03 medical and health sciences
0302 clinical medicine
Data acquisition
medicine
Feature (machine learning)
Artificial intelligence
business
F1 score
030217 neurology & neurosurgery
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Accession number :
- edsair.doi...........3f147c8c6a1ddabdee46bf2a09cb5701
- Full Text :
- https://doi.org/10.1109/icassp40776.2020.9054351