Back to Search Start Over

Use of Varying Constraints in Optimal 3-D Graph Search for Segmentation of Macular Optical Coherence Tomography Images

Authors :
Michael D. Abràmoff
Mona Haeker
Randy H. Kardon
Xiaodong Wu
Milan Sonka
Source :
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007 ISBN: 9783540757566, MICCAI (1)
Publication Year :
2007
Publisher :
Springer Berlin Heidelberg, 2007.

Abstract

An optimal 3-D graph search approach designed for simultaneous multiple surface detection is extended to allow for varying smoothness and surface interaction constraints instead of the traditionally used constant constraints. We apply the method to the intraretinal layer segmentation of 24 3-D optical coherence tomography (OCT) images, learning the constraints from examples in a leave-one-subject-out fashion. Introducing the varying constraints decreased the mean unsigned border positioning errors (mean error of 7.3 ± 3.7 µm using varying constraints compared to 8.3 ± 4.9 µm using constant constraints and 8.2 ± 3.5 µm for the inter-observer variability).

Details

ISBN :
978-3-540-75756-6
ISBNs :
9783540757566
Database :
OpenAIRE
Journal :
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007 ISBN: 9783540757566, MICCAI (1)
Accession number :
edsair.doi...........3f04bafca1a5fb73523c15c8e97255ac
Full Text :
https://doi.org/10.1007/978-3-540-75757-3_30