Back to Search Start Over

Microarray analysis after strenuous exercise in peripheral blood mononuclear cells of endurance horses

Authors :
Michela Felicetti
Andrea Verini-Supplizi
Eric Barrey
Maurizio Silvestrelli
Stefano Capomaccio
Katia Cappelli
Source :
Animal Genetics. 41:166-175
Publication Year :
2010
Publisher :
Wiley, 2010.

Abstract

It is known that moderate physical activity may have beneficial effects on health, whereas strenuous effort induces a state resembling inflammation. The molecular mechanisms underlying the cellular response to exercise remain unclear, although it is clear that the immune system plays a key role. It has been hypothesized that the physio-pathological condition that develops in athletes subjected to heavy training is caused by derangement of cellular immune regulation. The purpose of the present study was to obtain information on endurance horse gene transcription under strenuous conditions and to identify candidate genes causing immune system derangement. We performed a wide gene expression scan, using microarray technology, on peripheral blood mononuclear cells of ten horses chosen from high-level participants in national and international endurance races. The use of three different timepoints revealed changes in gene expression when post-effort samples (T1, taken immediately after the race; and T2, taken 24 h after the race) were compared with basal sample (T0, at rest). Statistical analysis showed no differences in gene expression between T0 and T2 samples, indicating complete restoration of homeostasis by 24 h after racing, whereas T1 showed strong modulation of expression, affecting 132 genes (97 upregulated, 35 downregulated). Ingenuity pathway analysis revealed that the main mechanisms and biofunctions involved were significantly associated with immunological and inflammatory responses. Real-time PCR was performed on 26 gene products to validate the array data.

Details

ISSN :
02689146
Volume :
41
Database :
OpenAIRE
Journal :
Animal Genetics
Accession number :
edsair.doi...........3ed2bfd6775a971961c092059e2e39a7
Full Text :
https://doi.org/10.1111/j.1365-2052.2010.02129.x