Back to Search Start Over

FIRST: Combining forward iterative selection and shrinkage in high dimensional sparse linear regression

Authors :
Hao Helen Zhang
Subhashis Ghosal
Wook-Yeon Hwang
Source :
Statistics and Its Interface. 2:341-348
Publication Year :
2009
Publisher :
International Press of Boston, 2009.

Abstract

We propose a new class of variable selection techniques for regression in high dimensional linear models based on a forward selection version of the LASSO, adaptive LASSO or elastic net, respectively to be called as forward iterative regression and shrinkage technique (FIRST), adaptive FIRST and elastic FIRST. These methods seem to work effectively for extremely sparse high dimensional linear models. We exploit the fact that the LASSO, adaptive LASSO and elastic net have closed form solutions when the predictor is onedimensional. The explicit formula is then repeatedly used in an iterative fashion to build the model until convergence occurs. By carefully considering the relationship between estimators at successive stages, we develop fast algorithms to compute our estimators. The performance of our new estimators are compared with commonly used estimators in terms of predictive accuracy and errors in variable selection. AMS 2000 subject classifications: Primary 62J05, 62J05; secondary 62J07.

Details

ISSN :
19387997 and 19387989
Volume :
2
Database :
OpenAIRE
Journal :
Statistics and Its Interface
Accession number :
edsair.doi...........3e1d57b37af26886a384a175c66aeb99
Full Text :
https://doi.org/10.4310/sii.2009.v2.n3.a7