Back to Search Start Over

Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence

Authors :
Xin Li
Xiaoquan Zhang
Juan Feng
Source :
Information Systems Research. 30:1107-1123
Publication Year :
2019
Publisher :
Institute for Operations Research and the Management Sciences (INFORMS), 2019.

Abstract

Online product reviews are arguably one of the most easily accessible sources of marketing data for online retailers. It is possible to build machine learning tools to learn consumers' opinions from online word of mouth (WOM). Menu costs are practically trivial for online retailers, and it is not difficult to program automatic price changes based on live feeds of online review data. This paper argues that sellers can use online product reviews to develop better pricing strategies. We first build a theoretical model to examine a seller's optimal pricing strategy when online WOM information is taken into consideration. We find that, with consumer reviews, firms may take price-skimming and penetration strategies depending on the combination of consumer characteristics (such as misfit cost) and product characteristics (such as product quality). We examine a book retailing data set collected from online stores to offer empirical support for the analytical predictions.

Details

ISSN :
15265536 and 10477047
Volume :
30
Database :
OpenAIRE
Journal :
Information Systems Research
Accession number :
edsair.doi...........3d54e3b93ef6b15adb47810101874810
Full Text :
https://doi.org/10.1287/isre.2019.0852